top of page

A Mathematical Treatment of the Joule-Kelvin Effect

Consider a volume of gas     at a high pressure      and has internal energy,      . The gas must do work on the gas already in the lower pressure region, and the gas may change its temperature such that the internal energy in the lower pressure region is     .

CodeCogsEqn.gif
CodeCogsEqn-2.gif
CodeCogsEqn-3.gif
CodeCogsEqn-4.gif
CodeCogsEqn-5.gif

Enthalpy

Enthalpy is defined as

H=U+pV,

where U, p, and V are respectively the internal energy, pressure, and volume.

dH=TdS+Vdp

​

CodeCogsEqn-12.gif

We can see that this process conserves enthalpy.

We want to know how the temperature changes at constant enthalpy when we reduce the pressure, demonstrated by the following relationship:

CodeCogsEqn-6.gif

Using the reciprocity theorem and the definition of heat capacity, we obtain the following:

Maths Prerequisites:

  • Partial Differential - Reciprocity Theorem and Clairaut's Thoerem

CodeCogsEqn-7.gif

(1)

CodeCogsEqn-8.gif

(2)

By substituting equation (2) into equation (1):

CodeCogsEqn-9.gif

The inversion temperature occurs when

CodeCogsEqn-10.gif

Heat Capacity at constant pressure, 

CodeCogsEqn-16.gif

Heat capacity measures temperature change when a given heat is supplied to a system.

At constant pressure, this is

CodeCogsEqn-17.gif
CodeCogsEqn-18.gif
CodeCogsEqn-11.gif

For helium, the inversion temperature is 43K.

Maxwell's Relations

Because thermodynamic potentials (internal energy, enthalpy) are exact differentials, 

​

​

using Gibbs energy,

dG=-SdT+VdT

​

we obtain:

CodeCogsEqn-13.gif
CodeCogsEqn-14.gif
CodeCogsEqn-15.gif

References:

Blundell S J and Blundell K M, "Concepts in Thermal Physics: Second Edition", Oxford University Press, Oxford (2010)

© 2019 Durham University Physics In Society Project - Medical Physics

J. Henderson, L.Y Kuo, S. Lun, A. Sair, and K. Vega

bottom of page